ECE 597TN/697TN - Photonics
Department of Electrical and Computer Engineering
University of Massachusetts Amherst

Syllabus
Spring 2017

Instructor
Prof. Amir Arbabi
Office: Knowles 211C
Phone: (413)-545-6193
e-mail: arbabi@umass.edu

Time and Location
Lecture: 8:30AM-9:45AM Tuesdays and Thursdays, Marston 220
Office hours: 10:00AM-10:45AM Tuesdays and Thursdays or by appointment, Knowles 211C

Prerequisite:
ECE 333 (Fields and Waves I), Physics 422 (Electricity and Magnetism II), or equivalent.

Course Overview
This course introduces students to the fundamental operation principles of optical components and photonic devices. Three different description of optical propagation and interaction (geometrical optics, wave optics, and electromagnetic optics) with increasing complexity and accuracy are presented. Physical phenomena and photonics devices whose operation can be described within the scope of each theory are introduced and discussed.

Resources
Main text:
e-book version available here through UMass Library.
Other References:
Hecht, E. Optics. 4th edn, (Addison-Wesley, 2002).

Grading
Homework 40%
Midterm (tentatively March 23) 15%
Project 20%
Final Exam 25%

Homework Policies
Weekly problem sets (10 total) will be assigned on Thursdays, and are due the following Thursday in class before the start of the lecture. Students get two late homework passes and may turn them in without a penalty at the beginning of the lecture following the due date.
Collaboration on problem sets is allowed and encouraged. However, you must write your own solutions to the problems, and must cite all people with whom you have collaborated.

Project

Each student should conduct a critical literature review on an active research area in the field of photonics, present it in a 12-min-talk and a 2-page report. A list of project topics will be provided in the second part of the course (after the midterm), and the students are also welcome to propose their topics of interest.

Exam Policies

The class will have one in class midterm and the final exam. The midterm will cover the materials before the spring break and the final exam will cover the materials after the break. The exams are closed-book, but students are allowed to bring one double-sided page of notes. Use of calculators is also allowed.

Course Topics

Ray optics

Fermat principle, Laws of reflection and refraction, optical components, Paraxial ray tracing (transfer matrix (ABCD) approach), Spot diagram, Optical design software

Wave optics

Helmholtz equation, Paraxial equation, Gaussian beams, ABCD approach, other types of beams, Angular spectrum method, resolution limit, Fresnel and Fraunhofer diffraction, Optical Fourier transform, 4f-system, Holography

Electromagnetic optics

Optics of dielectric media, absorption, dispersion, anisotropy, nonlinearity, Optical properties of conductive media, Vectorial beams, Kramers-Kronig relation

Polarization of light

Reflection and refraction from planar interfaces, Jones matrix, Stocks parameters and Poincare sphere, Light propagation in anisotropic media, Optical activity and Magneto-optics effect, Liquid crystals, Polarization manipulation components

Optical waveguides

Guided waves, slab waveguide modes, optical fibers, commonly used photonics waveguides, coupling into and between optical waveguides, optical waveguide components

Periodic structures

Bragg mirror, Bloch modes, band structure, photonic bandgap

Optical resonators

Free space resonators, quality factor and life-time, micro-resonators, coupling to resonators, mode dynamics

Optical amplification and gain

Interaction of light with atoms, spontaneous and stimulated emission, population inversion and optical gain, gain nonlinearity

Lasers

Optical feedback, lasing condition and threshold, spectral distribution, common types of lasers, pulsed lasers

Time-permitting: Electro-optics, Nonlinear optics, Acousto-optics