ECE 585: MICROWAVE ENGINEERING II

Spring 2020 Dept. of Electrical & Computer Engineering

Summary: This course is a continuation of ECE 584 dealing with the analysis and design of several multi-port microwave circuit devices, the unique properties of ferrimagnetic materials and their use in non-reciprocal components, and an introduction to active microwave circuits.

Major Course Topics

<u>Multi-port Microwave Devices (~3 wks)</u>: Power Dividers, Directional Couplers, Hybrids

<u>Microwave Filters (~3 wks)</u>: Periodic Structures, Filter Design by Image Parameter and Insertion Loss Methods, Filter Implementations

<u>Ferrimagnetic Components (~2 wks)</u>: Properties, Isolator, Circulator, Gyrator, Phase Shifter

Noise & Active Devices (~2 wks): Noise Figure & Temperature, Dynamic Range, Distortion

Basic Amplifiers & Oscillators (~3 wks): Power Gains, Stability, Phase Noise, Mixers

Prerequisites:

Microwave Engineering I (ECE 584) or equivalent

Schedule:

MWF 12:20--1:10 PM in sunny ELAB 306

Instructor:

Stephen J. Frasier, <u>frasier@umass.edu</u> – please include ECE-585 in subject line Office: 113A KEB. Tel: 5-4582. Office hours: By appointment.

Teaching Assistant: TBD

Textbook:

Microwave Engineering, 4th ed., 2012, David Pozar, John Wiley & Sons.

Homework:

Periodic assignments announced in class. Some may be computer exercises.

Grading:

Homework: 20%, Midterm Exam on 3/11/2020: 40%, Final Exam: 40%

Course Objectives:

Students completing this course should be able to:

- 1. Understand the theoretical principles behind microwave devices and networks.
- 2. Design microwave circuit components such as power dividers, hybrids, and filters.
- 3. Understand the basic properties of components employing ferrimagnetic materials.
- 4. Understand and quantify the effects of noise in active microwave circuits.
- 5. Understand concepts of Power gain and stability in microwave circuits.