ECE597-6097 NE: Nanoelectronics Fall 2021

Instructor: Prof. Eric Polizzi
Office: Marcus 201C

Day, Time : Mon-Wed 2:30-3:45 Office Hours: by appointment

Prerequisite: ECE344 or equivalent + basics of quantum mechanics

Textbook (recommended, not required):

 "Introduction to Nanoelectronics" V. Mitin, V. A. Kochelap, M. A. Stroscio, Cambridge University Press (2008)

"Fundamentals of Nanoelectronics"
 G. W. Hanson, Pearson (2008)

Course Goals:

- 1- Cover the fundamental of the nanoelectronics discipline ranging from nanophysics, to nano structures and nanodevices.
- 2- Review the fundamental of quantum mechanics required for understanding the electronic properties of matter at the nanoscale.
- 3- Analyze the electronic properties of atoms, molecules and nanostructures including Carbon nanotubes and Nanoribbons.
- 4- Introduce quantum electron transport properties in nanostructures.
- 5- Propose a seminar series to provide the students with a complementary coverage of the theoretical, computational and experimental aspects on nanotechnology; The seminar includes talks on nanofabrication, electronic structure calculations, information at the nanoscale, nanoenergy and applications, THz sensing, and nano-computing.

Relation of Course Goals to Student Outcomes:

STUDENT OUTCOMES	COURSE GOALS				
	1	2	3	4	5
1. Able to apply engineering, science, and math to	Y	Y	Y	Y	N
identify, formulate, and solve complex problems					
2. Able to apply engineering design to produce	N	N	N	N	N
solutions that meet specified needs					
3. Able to communicate effectively with a range of	N	N	N	N	Y
audiences					
4. Able to recognize ethical and professional	N	N	N	N	N
responsibilities, and make informed judgments					
5. Able to function effectively on a team	N	N	N	N	N
6. Able to develop and conduct experiments, analyze	N	N	Y	N	N
and interpret data, and draw conclusions					
7. Able to acquire and apply new knowledge as	N	N	Y	N	N
needed, using appropriate learning strategies					

Outline:

I. Nanophysics:

This chapter will provide an overview of fundamental physical principles required for understanding the electronic properties of matter at the nanoscale; it includes:

Review of quantum mechanics: light, electrons, wave mechanics, Schrodinger equation;

Free and confined electrons: quantum wells, wires and dots;

Atoms: Hydrogen and beyond.

II. Nanostructures:

This chapter will review the main electrical property differences between molecules, dots, nanotubes, nanowires, nanoribbons, and other nanoscale structures. The goal is to provide a basic understanding of nanoelectronics by bridging the gap between nanoscale physics and nanoscale devices. It includes:

Theory of solid: Crystal structure, periodic potential, band theory and semiconductors; **Electronic structure calculations**; **Materials**: Molecules, Graphene, Carbon Nanotube, Si Nanowires.

III. Nanodevices

This last chapter will describe the electron transport properties in nanostructures. It includes:

Quantum tunneling and single electron device;

Electrons in low dimensional systems: Density of states and quantum statistics, electron transport, ballistic limit, Landauer formula, quantum conductance,

Emerging devices and applications.

Grading:

5 Quiz: 40% and 3-4HW: 20%

1 project report +presentation (by group of 2): 40%

Few Nanoseminars (some examples from previous years)

Prof. Sigfrid Yngvesson:

- Nanofabrication
- Nanoelectronics Device Examples- CNT and THz

Prof. Neal Anderson:

Information and noise in nanoelectronic computing.

Prof. Eric Polizzi:

Computational nanoelectronic

Prof: Andras Moritz:

Fundation of Computing at the Nanoscale

Prof. Qiangfei Xia:

Nanostructure Engineering

Prof. Zlatan Aksamija

Nanoenergy

Prof. Joshua Yang

Memristors